Impact of Gate Process Technology on EOT of HfO2 Gate Dielectric

نویسندگان

  • Daewon Ha
  • Qiang Lu
  • Hideki Takeuchi
  • Tsu-Jae King
  • Katsunori Onishi
  • Young-Hee Kim
  • Jack C. Lee
چکیده

To facilitate CMOS scaling beyond the 65 nm technology node, high-permittivity gate dielectrics such as HfO2 will be needed in order to achieve sub-1.3nm equivalent oxide thickness (EOT) with suitably low gate leakage, particularly for low-power applications. Polycrystalline silicongermanium (poly-SiGe) is a promising gate material because it is compatible with a conventional CMOS process flow, and because it can yield significantly lower electrical gate-oxide thickness as compared with poly-Si. In this paper, the effects of the gate material (Si vs. SiGe) and gate deposition rate on EOT and gate leakage current density are investigated. Poly-Si0.75Ge0.25 gate material yields the lowest EOT and is stable up to 950C for 30 seconds, providing 2 orders of magnitude lower leakage current compared to poly-Si gate material. A faster gate deposition rate (achieved by using S2H6 instead of SiH4 as the gaseous Si source) is also effective for minimizing the increases in EOT and leakage current with high-temperature annealing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of interface/border defect on performance and reliability of high-k/metal-gate CMOSFET

The impact of interface/border defect on performance and reliability was investigated for gate-first and gate-last high-k/metal-gate CMOSFET. For high-k/metal-gate CMOSFET, VFB roll-off is critical as effective oxide thickness (EOT) scales below 15 angstrom (Å) especially for metal gate-first device with an extra capping layer to adjust VTH. By proposing a model of metal-gate process induced in...

متن کامل

Optimization of Direct Tunneling Gate Leakage Current in Ultrathin Gate Oxide FET with High-K Dielectrics

This paper presents the impact of parameter optimization of n-type MOSFET for direct tunneling gate current using ultrathin Si3N4 and HfO2 with EOT (Equivalent Oxide Thickness) of 1.0 nm. This work is compared with TCAD santaurus simulation results to verify that accuracy of the model and excellent reduction in gate leakage with the introduction of the high-k gate dielectrics (HfO2 & Si3N4) in ...

متن کامل

Process Optimization and Integration of Hfo2 and Hf-silicates

We have established in-line characterization techniques for analyzing the bulk and interface-charge properties of dielectric films, for process optimization. Surface charge analysis (SCA) is used to determine the densities of interface states, fixed charge, and near-interface traps in ultra-thin dielectrics, and is useful for tracking the influence of post-deposition processing on interface-cha...

متن کامل

Improved Performance of Ultra-Thin HfOz CMOSFETs Using Poly-SiGe Gate

Poly-SiGe is investigated as the gate material for CMOS transistors with ultra-thin Hf02 gate dielectric. Compared with polySi, poly-SiGe reduces the gate depletion effect, and also results in thinner EOT of the gate dielectric after 1000°C annealing, with low gate leakage maintained. The Si interface quality is also better than that achieved with surface nitridation, which has been used to red...

متن کامل

Electrical Properties of Ultrathin Hf-Ti-O Higher k Gate Dielectric Films and Their Application in ETSOI MOSFET

Ultrathin Hf-Ti-O higher k gate dielectric films (~2.55 nm) have been prepared by atomic layer deposition. Their electrical properties and application in ETSOI (fully depleted extremely thin SOI) PMOSFETs were studied. It is found that at the Ti concentration of Ti/(Ti + Hf) ~9.4%, low equivalent gate oxide thickness (EOT) of ~0.69 nm and acceptable gate leakage current density of 0.61 A/cm2 @ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003